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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 2-24-_9A

THE EFFECT OF MOMENT-OF-AREA-RULE MODIFICATIONS ON THE

DRAG, LIFT, AND PITCHING-MOMENT CHARACTERISTICS OF AN

UNSWEPT ASPECT-RATIO-6 WING AND BODY COMBINATION*

By Robert R. Dickey

SUMMARY

An experimental investigation was conducted to determine the effect

of moment-of-area-_ule modifications on the drag, lift, and pitching-

moment characteristics of a wing-body combination with a relatively high

aspect-ratio unswept wing. The basic configuration consisted of an

aspect-ratio-6 wing with a sharp leading edge and a thickness ratio of

0.06 mounted on a cut-off Sears-Haack body. The model with full moment-

of-area-rule modifications had four contoured pods mounted on the wing

and indentations in the body to improve the longitudinal distributions

of area and moments of area. Also investigated were modifications employ-

ing pods and indentations that were only half the size of the full modi-

fications and modifications with partial body indentations. The models
were tested at angles of attack from -2 ° to +12 ° at Mach numbers from 0.6

to 1.4.

In general_ the moment-of-area-rule modifications had a large effect

on the drag characteristics of the models but only a small effect on their

lift and pitching-moment characteristics. The modifications provided sub-

stantial reductions in the zero-lift drag at transonic and low supersonic

speeds, but at subsonic speeds the drag was increased. Near Mach num-

ber 1.0, the model with full modification provided the greatest reduction

in drag_ but at the highest test Mach numbers the half modification gave

the largest drag reduction. In general, the percent reductions of zero-

lift drag obtained with the aspect-ratio-6 wing were as great or greater

than those previously obtained with aspect-ratio-3 wings. The effect of

the modifications on the drag due to lift was small except at Mach num-

bers below 0.9 where the modified models had higher drag-rise factors.

Above Mach number 0.9, the modified models had higher lift-drag ratios

than the basic model. The modified models also had higher lift curve

slopes and generally were slightly more stable than the basic configuration.

*Title, Unclassified



INTRODUCTI0_

The moment-of-area-rule method for reducing the wave drag of wing-
body combinations over a range of transonic and low supersonic Machnum-
bers was introduced in reference i. In general, the moment-of-area rule
indicates that the wave drag depends only on the longitudinal distribu-
tions of the area and momentsof area taken about the vertical plane of
symmetry, and that reductions in wave drsg can be obtained if the fine-
ness ratio and smoothnessof these distributions are increased. It is
shownin reference i that as the speed is increased above Machnumber1.0,
successively higher order momentdistributions becomeimportant in deter-
mining the wave drag of a configuration. Thus, at sonic speed, the wave
drag depends only on the distribution of the cross-sectional or zero
momentof area; whereas, at Machnumbers slightly above 1.0, the distribu-
tion of the second momentof area, as well as the cross-sectional area,
becomesimportant. At still higher Machnumbers, the zero, second, and
fourth momentdistributions must be consZdered. It can also be shown
from the drag equations of reference i t1_t the higher order momentdis-
tributions becomeimportant as the aspec_ ratio increases.

Previous moment-of-area-rule investigations have been concerned with
reducing the zero-lift wave drag of relatively low-aspect-ratio wing-body
combinations near a Machnumberof 1.0 by improving the distributions of
area and second momentof area (see, e.g., refs. i, 2, and 3). The pur-
pose of the present investigation was to determine the effects of apply-
ing moment-of-area-rule modifications to a configuration with a wing of
relatively high aspect ratio. Of prima_r interest were the drag reduc-
tions provided at lifting conditions as _rell as at zero lift and the
effects of the modifications on the lift and pitching-moment characteristics.

To accomplish the foregoing objectire, models of a wing-body combina-
tion with an aspect-ratio-6 unswept wing were tested with and without
moment-of-area-rule modifications. The longitudinal distributions of the
fourth momentof area as well as the cro;s-sectional area and the second
momentof area were considered in the design of the modifications. The
momentdistributions were arbitrarily limited to the fourth power in order
to simplify the design calculations. In addition to the configurations
with complete moment-of-area-rule modifications, models were tested with
modifications that were only one-half th_ size required for minimumdrag
near Machnumber1.0. It was reasoned t_at although such a design would
sacrifice somedrag reduction capability near Machnumber1.0, increased
drag reductions would result at the higher Machnumbersbecause the aver-
age distribution of the projected area iatercepted by the Machplanes
would more nearly approximate the averag_ distribution desirable for low
drag at supersonic Machnumbers, as given in reference 4. Both the full
moment-of-area-rule modification and the half moment-of-area-rule modifica-
tion were also tested with partial body indentations that did not compen-
sate for the addedvolume of the wing pcds. Although this type of



modification would not be expected to be as effective as a full indenta-
tion_ it could be used to advantage in cases where the space requirements
in a fuselage would prohibit the use of the full indentation.

The lift_ drag_ and pitching momentof the basic and modified models
were measuredat angles of attack from -2° to +12° over a Machnumber
range of 0.6 to 1.4. A constant Reynolds numberof 0.8 million based on
the meanaerodynamic chord of the wing was maintained throughout the
test program.

NOTATION

A

CD

CDf

CDo

mOw

CL

CL_

Cm

dC D

2

dCL

dCm

dC L

L

D

aspect ratio

drag coefficient based on wing area

friction-drag coefficient

drag coefficient at zero lift

wave-drag coefficient, CDo - CDf

incremental wave-drag coefficient_ CDw of total configuration

minus CDw of basic body alone

lift coefficient based on wing area

lift curve slope at _ = 0

pitching-moment coefficient referred to quarter-chord point of

mean aerodynamic chord

mean aerodynamic chord

drag-rise factor

slope of pitching-moment curve at CL = 0

lift-drag ratio

maximum lift-drag ratio

M Mach number
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R

S

CL

Reynolds number

wing area

angle of attack, deg

speed parameter, _M 2 - i

taper ratio of wing

APPARATUS

The investigation was conducted in the Ames 2- by 2-foot transonic

wind tunnel. This tunnel is of the close, I-circuit, variable-pressure

type and is equipped with a flexible nozzle and ventilated test section

which permits continuous choke-free opera_ion from 0 to 1.4 Mach number.

A complete description of the wind tunnel may be found in reference 5.

The models were mounted in the wind tunnel_ on a sting-supported internal

strain-gage balance.

The five models described below were tested during this investigation:

I. Basic model (fig. l(a)): The basic or unmodified configuration

consisted of an aspect-ratio-O unswept wing with an NACA 0006-05 airfoil

section mounted on a cut-off Sears-Haack _ody.

2. Moment-of-area-_mule model (fig. L(b)): The model with the full

moment-of-area-rule modifications prescri}ed in reference i had four

contoured pods mounted on the wing and inlentations in the body that

compensated for the added volume of the wing pods as well as for part of

the wing volume.

3. Moment-of-area-rule model with p_rtial body indentation

(fi_. l(b)): This model was identical to the fully modified model des-

cribed above except that the body was not indented to compensate for the

added volume of the wing pods.

4. Half moment-of-area-rule model (fig. l(c)): The model with

half-size modifications had wing pods and indentations for the wing that

were only one-half the size prescribed in reference i. The body was

indented to compensate for the total volune of the half-size pods.

5. Half moment-of-area-lmule model w_th partial body indentation

(fig. l(c)): This model was identical to the model with half-size

moment-of-area-rule modifications described above except that the body

was not indented to compensate for the adied volume of the wing pods.
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Before they were indented, the bodies of all models except that of

the fully modified moment-of-area-ruJle model were the same size. The

total volumes of the various configurations were therefore dependent on

the amount of indentation in the body and on the size of the pods. The

model with full moment-of-area-_ule modification and complete body inden-

tation utilized a body of slightly larger diameter than the other models

so that its total volume was equal to that of the model which had the

moment-of-area-rule modification with partial body indentation. These

two models had a total volume 7 percent greater than that of the basic

model. The volume of the model with half-size modifications and partial

body indentations was 2 percent greater than that of the basic model,

and with complete body indentations was 3 percent less than the basic

model.

The effect of the various modifications on the longitudinal distri-

butions of cross-sectional area is shown in figure 2. It may be seen

that only the fully modified moment-of-area-rule model had an area

distribution without protuberances. The half-size modifications elimi-

nated only part of the bump caused by the wing, and the partial indenta-

tions did not compensate for the added cross-sectional area of the pods.

The longitudinal distributions of the second moment of area and of

the fourth moment of area are shown in figures 3 and 4, respectively.

The moments of area contributed by the body are small compared to those

of the wing and pods and therefore have been neglected; consequently,

the moment distributions show no effect of the various body indentations.

It may be seen that the addition of the contoured pods increased the

fineness ratio of the moment distributions without increasing their peak

values.

TESTS AND DATA REDUCTION

The lift, drag, and pitching moment of the models were measured at

angles of attack from -2° to 12 ° at Mach numbers from 0.8 to 1.4. The

zero-lift drag of the models was measured over a Mach number range of 0.6

to 1.4. A constant Reynolds number of 0.8 million based on the mean

aerodynamic chord of the wing was maintained at all Mach numbers by vary-

ing the tunnel stagnation pressure. In order to assure a turbulent

boundary layer over the entire surface of the models and thus permit the

evaluation of friction drag with a minimum degree of uncertainty, the

transition point of the boundary layer was fixed by carborundum strips

placed near the leading edge of the wings and on the noses of the bodies

and pods. The additional wave drag caused by the carborundum is believed

to be small and should not affect the relative drag levels of the various

configurations.



The measureddrag of all models was adjusted to correspond to a
condition of free-stream static pressure acting at the blunt base of the
bodies and therefore all drag coefficients presented in this report
represent the foredrag of the models. No corrections were applied to the
data for wall-interference effects since the results Of reference 6 indi-
cate that for wing-body models of the size employedduring the present
tests (blockage ratios of approximately 0.6 percent) the interference
effects would be small. Corrections for air-stream angularity and longi-
tudinal pressure gradient were found to be small and have been neglected.

In addition to the small systematic elrors which maybe introduced
because the corrections discussed above are neglected, the test data are
subject to certain randomerrors of measurement. The randomuncertainties
of the test data at three Machnumbersand two angles of attack are listed
in the following table:

M
cg

CL

CD

Cm

M=O.6

_= 0O

-+0.002

+. 02 °

+ .005

±.6 3
+ .004

±0.002

±.03 °

± .007

±. 0005

± .006

M= 1.0

(_= 00

±0. 002

±. 02 °

+ .004

±. 0003

i .003

±0. (O2

± .(,3°

±. (_05

±. 0010

± .c_)5

M=I.4

= 00

±0.002

±.02 °

±.004

±.0003

±.003

±0.002

±.03 °

±.005

±.0006

±.OO4

RESULTS AND DISCL_SION

The basic data for the unmodified and modified models are shown in

figures 5 through 7 for several representative Mach numbers.

Drag at Zero Li:_t

The zero-lift drag coefficients of th_ basic wing-body model, the

modified models, and the basic body alone ire shown plotted versus Mach

number in figure 8. It may be seen that t _e modifications provided sub-

stantial drag reductions over most of the _ransonic and supersonic speed

range investigated. The model with full m0ment-of-area-rule modifications

had the lowest drag near Mach number 1.0, _nd the model with half modifi-

cations had the lowest drag at the higher _upersonic Mach numbers.

Although the models with partial indentations in the body also provided

drag reductions over most of the transonic and supersonic speed range,

in general, the reductions were not as large as those provided by the
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corresponding modification with complete body indentation. Because of the

additional surface area of the pods_ the modified models had greater fric-

tion drag and therefore greater total drag than the basic model at sub-

sonic speeds. However, at a Reynolds number representative of a full-

scale airplane, the increased friction drag caused by the addition of pods

would be less than that indicated by these low Reynolds number wind-tunnel

tests. The solid symbols shown in figure 8 represent the test data

adjusted to a Reynolds number of 30 million. The adjusted drag values

shown for a Reynolds number of 30 million were obtained by reducing the

friction drag measured at a Reynolds number of 0.8 million by the ratio

of the corresponding Schoenherr friction coefficients given in refer-

ence 7. It was assumed that at a Mach number of 0.6 the measured fore-

drag was entirely due to skin friction and that the variation of friction

drag with Mach number was that given in reference 8 for a turbulent

boundary layer.

The variation of wave-drag coefficient with Mach number for the

various models is shown in figure 9. Wave drag was obtained by subtract-

ing the friction drag, which was computed as described above, from the

total zero-lift foredrag. In the transonic speed range, all of the modi-

fications provided large wave-drag reductions. The wave drag of the

model with full moment-of-area-rule modifications was only 23 percent of

that of the basic model at Mach number 1.0. The reductions in wave drag

provided by the modifications became less as the Mach number increased_

and at the highest test Mach number (M = 1.4) the full moment-of-area

rule and the moment-of-area rule with partial indentation in the body

resulted in slightly higher wave drags than that of the basic configuration.

Since the moment-of-area rule attempts to minimize the additional

wave drag caused by the addition of a wing to a body, it is necessary to

isolate this part of the drag in order to determine how much of the drag

caused by the wing was eliminated by the various modifications. This

incremental wave drag (obtained by subtracting the wave drag of the basic

body from the wave drag of the complete configurations) for the basic and

modified models is shown in figure lO. At Mach number 1.0, the full

moment-of-area-rule modifications were successful in eliminating 84 per-

cent of the drag caused by the basic wing. At Mach number 1.4, however,

this modification resulted in an increase of approximately 23 percent.

The half moment-of-area-rule modifications, on the other hand, eliminated

60 percent of the drag caused by the basic wing at Mach number 1.0 and

ii percent at Mach number 1.4.

The effect of including the higher order moments of area in the

design of the modification is shown in figure ii_ wherein, the incremental

wave-drag reductions obtained for the present quadripod design (moments

up to and including the fourth moment) are compared to those obtained in

references i and 3 for bipod designs (moments up to and including the

second moment). Because the data were obtained from models of different

aspect ratio, the results are plotted on a reduced aspect-ratio basis.
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It is apparent that the modifications that :onsidered the fourth moment-

of-area distributions extended the wave-dra_ reductions to much higher

values of pA than those that did not. It also appears that wave-drag

reductions could be extended over a still hLgher pA range by consider-

ing the sixth or higher moment-of-area distributions.

It may be noted in figure ii that at _A = 0 (M = 1.0) the drag

reduction obtained with the fully modified _spect-ratio-6 wing was greater

than that obtained with the aspect-ratio-3 inswept wing of reference 3.

This difference is not explained by the theory of reference i since both

models were modified to have the same shape of cross-sectional area

distribution.

Drag at Lifting CondLtions

The drag at lift coefficients of 0.2, D.4, and 0.6 is shown in fig-

ure 12 for the basic model and the models wLth full and half moment-of-

area-rule modifications. The results, in g_neral_ are similar to those

at zero lift and indicate that the reductions in transonic drag provided

by the moment-of-area-rule modifications ar_ not limited to the zero-lift

case but extend through a wide range of lifting conditions. Further

evidence of this is shown in figure 13 wher_ the lift-drag ratios of the

basic and modified configurations are plottsd versus lift coefficient for

a subsonic, a transonic_ and a supersonic _ch number.

In figure 14_ the drag-rise factor and the maximum lift-drag ratio

are plotted versus Mach number. As can be seen, the drag-rise factor was

not appreciably changed by the moment-of-area-rule modifications except

at Mach numbers below 0.9. The modificaticas did, however, have a con-

siderable effect on the maximum lift-drag ratios. At subsonic speeds_
the models with moment-of-area-rule modifications had lower maximum lift-

drag ratios than the basic model, but at Msch numbers above 0.88 the modi-

fications generally resulted in higher maximum lift-drag ratios. The

largest increase occurred near Mach number 1.0 where the model with full

moment-of-area-rule modifications had a maximum lift-drag ratio 38 per-

cent greater than the basic model. Because of the higher friction-drag

coefficients at low Reynolds numbers_ the _alues of the lift-drag ratios

obtained from these wind-tunnel tests are considerably lower than could

be obtained at higher Reynolds numbers. Ar indication of the maximum

lift-drag ratios that might be expected at a Reynolds number representa-

tive of a full-scale airplane is shown by the solid symbols in figure 14.

To obtain these vs_lues, the measured drag cf the models was adjusted to

a Reynolds number of 30 million.
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Lift and Pitching-Moment Characteristics

The effect of the moment-of-area-rule modification on the lift

characteristics of the configuration was in general beneficial (fig. 5).

The lift curve slopes measured at _ = 0° are plotted versus Mach number

in figure 15. As can be seen_ the modified models had greater lift curve

slopes than the basic model° It can also be seen from figure 5 (CL vs. _)

that at subsonic speeds the modified models did not have the abrupt stall

characteristics displayed by the basic model.

At supersonic speeds the modified models were more stable (see fig. 7).

On the other hand, the basic model had slightly less variation of pitching-

moment curve slope with Mach number, as can be seen from figure 15.

CONCLUSIONS

An experimental wind-tunnel investigation was performed to determine

the effect of moment-of-area-rule modifications on the drag_ lift, and

pitching-moment characteristics of a relatively high aspect-ratio wing-

body corrlbination. The results obtained from tests with an aspect-ratio-6

unswept wing indicate the following:

1. The minimum drag of a wing-body combination with a relatively

high aspect-ratio wing was substantially reduced in the transonic and low

supersonic speed range by means of moment-of-area-rule modifications which

imprqved the distributions of the area and the second and fourth moments

of area. However; the modifications resulted in increased drag at subsonic

speeds.

2. The drag reductions provided by the moment-of-area-rule modifi-

cations were maintained throughout the normal range of lift coefficients;

consequently_ the modified models had higher lift-drag ratios at transonic

and low supersonic speeds.

3. Near Mach number 1.0, the full moment-of-area-rule design resulted

in the lowest drag, but at higher speeds (M = 1.06 to 1.40) a design employ-

ing half-size modifications had the lowest drag. Partial modifications

which did not indent the body to compensate for cross-sectional area of

the pods generally resulted in smaller drag reductions.

4. The moment-of-area-rule modifications had no detrimental effect

on the lift or pitching-moment characteristics. In general, the modified

models had higher lift curve slopes and were slightly more stable than

the basic model.

Ames Research Center

National Aeronautics and Space Administration

Mof£ett Field, Calif., Nov. 26, 1958
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TABLEI.- BODYCOORDINATES

Bo_y

station,
in.

0

.5
i.0

1.5
2.0

2.5

3.0

3.5
4.0

4.5

5.0

D.5
6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
i0.0

io.5
Ii •0

ii.5

12.0

i2.5
13 .o
14•0

15.o
i6.o

17•0

Basic

0

•147

•242

•323

•394

•457

•512

•562
•610

•651

•687

•721

•75i

•778

.80i

•82o

•836

•851
•862
•87o

•874

•875
•874

•87o
.862

•851
.8361

.8o1

.751

.6871

•6!0 i

Body radius, in.

Moment-of-area rule

Complete body Partial body
indentation indentation

0

•158

•257

.345

.42o

•487

.546

•6oo

•649

•694

•733

•769

•8oi

• 829
•842
•843

.838
• 822

•8oo
•756

•716

•704

•716

•756

•800
• 822

.838
•842

.801

•733

•649

0

.147
•242

•323

•394

•457

•5i2
•562

•610

•651

•687

-721

• 751

•778

•8o1

•82o
.836

•851
• 862

.846
•829
•823

•829
.846

• 862

•851
•836

•8oi

•751
.687

•610

Half moment-of-area rule

Complete body Partial body
indentation indentation

0 0

.147
•242

•323

•394
•457

•512
•962
•610

•651

•687

•721

• 751
•778
•8oi

• 820
.833

•832
• 821
•794

•770
•760

•770
•794
•821
•832
.833
".801

•751

•687

•610

•147

•242

•323

•394

•457

•512

•562

•610

•651

•687

•721

•751

•778

•8oi

• 820

.836

.851
• 862

.858

.851

•850

•851

•857

.862

•851

•836

•8oi

•751

•687
•61o
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TABLE II.- POD C00]_DINATES

Pod
i

station_
in.

0

.25

.50

.75
1.00

1.25

1.5o

i. 75

i. 828

2. O0

2.25

2.50

2.585
2.75

2.792

3.00

3.25

3.50

3.75

3.95

Pod rad:us_ zn.

Moment-of-area rule

Inboard pod Outboard pod Inboard pod

O. 06O

• 103
• ]61
• 238
• 286

.292
•28.]
• 268

.2_3

.235

•2.]5

.192

.166

.135

.i00

.0_7

0

o.o4o

•o9o

.155

.192

.18L

.170

.152

.129

•104

.072
•026

0

Half moment-of-area rule

Outboard pod

0 O.O4O

.O7O

.1o5

.126

.113

.092

.064

.022

0

•060

.084

•118

.168

.19o

.187

•173

.153

•130

•102

•067

.014

iMeasured from midpoint of pod.
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